Geometría en espacios de Banach

Guevara Ramos, Jocelyn Mayrene and Flores Andrade, Fátima Margarita and Amaya Méndez, Jonathan Josué (2019) Geometría en espacios de Banach. Other thesis, Universidad de El Salvador.

[img]
Preview
Text
50109142.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial.

Download (1MB) | Preview

Abstract

RESUMEN: Hoy en día no podríamos concebir la mecánica cuántica sin los espacios de Hilbert, la teoría de distribuciones y la economía sin la teoría de la dualidad, ni la teoría de optimización y mejor aproximación sin la herramienta de los teoremas de Hahn-Banach, Krein-Milman y Alaoglu, deducidos por la geometría de espacios de Banach. Un espacio de Banach es un espacio normado completo (con la métrica definida por la norma). Comúnmente un espacio de Banach es entendido por un espacio normado en el que todas sus sucesiones de Cauchy convergen en ´el. La geometría de los espacios de Banach es el estudio algebraico y topológico de los mismos. Al estudiar la estructura topológica y algebraica entre los espacios se busca encontrar relaciones para comprender el comportamiento de espacios que son más complicados de estudiar. Así el concepto de geometría en espacios de Banach es un enlace entre el ´algebra y la topología de dichos espacios, es por eso que se profundizara la teoría de estos tratando que sea un documento autosuficiente. Se construirá una teoría solida con algunos ejemplos y la resolución de algunos ejercicios. Para ello se hará uso de fuentes bibliográficas confiables tanto escritas como virtuales. Se pretende demostrar los principales teoremas relacionados a la estructura algebraica y topológica de los espacios de Banach ` p , c0, el espacio C [0, 1] y el espacio peculiar J de James. ABSTRAC: Today we could not conceive of quantum mechanics without Hilbert spaces, distribution theory and economics without duality theory, or optimization theory and best approximation without the Hahn-Banach, Kerin-Krein theorems tool. Milman and Alaoglu, deduced by the geometry of Banach spaces. A Banach space is a complete normed space (with the metric defined by the norm). Commonly, a Banach space is understood as a normed space in which all its Cauchy sequences converge on it. The geometry of Banach spaces is the algebraic and topological study of them. By studying the topological and algebraic structure between spaces, we seek to find relationships to understand the behavior of spaces that are more complicated to study. Thus, the concept of geometry in Banach spaces is a link between the algebra and the topology of said spaces, that is why the theory of these will be deepened, trying to make it a self-sufficient document. A solid theory will be built with some examples and the resolution of some exercises. For this, reliable bibliographic sources, both written and virtual, will be used. It is intended to demonstrate the main theorems related to the algebraic and topological structure of the Banach spaces ` p , c0, the space C [0, 1] and the peculiar space J of James

Item Type: Thesis (Other)
Uncontrolled Keywords: espacio de Banach; espacios `p, c0, C [0, 1]; J de James, topología; bases de Hamel; bases de Schauder, operadores, funcionales; norma.
Subjects: 500 Ciencias naturales y matemáticas > 510 Matemáticas
500 Ciencias naturales y matemáticas > 510 Matemáticas > 516 Geometría
Divisions: Facultad Multidisciplinaria de Oriente > Licenciatura en Matemática
Depositing User: Maria Irma Aguilar De Martinez
Date Deposited: 23 Sep 2022 18:03
Last Modified: 23 Sep 2022 18:03
URI: https://ri.ues.edu.sv/id/eprint/29162

Actions (login required)

View Item View Item